Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 14: 1031914, 2023.
Article in English | MEDLINE | ID: covidwho-2318814

ABSTRACT

Introduction: The success of the human body in fighting SARS-CoV2 infection relies on lymphocytes and their antigen receptors. Identifying and characterizing clinically relevant receptors is of utmost importance. Methods: We report here the application of a machine learning approach, utilizing B cell receptor repertoire sequencing data from severely and mildly infected individuals with SARS-CoV2 compared with uninfected controls. Results: In contrast to previous studies, our approach successfully stratifies non-infected from infected individuals, as well as disease level of severity. The features that drive this classification are based on somatic hypermutation patterns, and point to alterations in the somatic hypermutation process in COVID-19 patients. Discussion: These features may be used to build and adapt therapeutic strategies to COVID-19, in particular to quantitatively assess potential diagnostic and therapeutic antibodies. These results constitute a proof of concept for future epidemiological challenges.


Subject(s)
B-Lymphocytes , COVID-19 , Humans , Receptors, Antigen, B-Cell/genetics , RNA, Viral , SARS-CoV-2/genetics , Patient Acuity
2.
Vox Sang ; 117(11): 1332-1344, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2118457

ABSTRACT

BACKGROUND AND OBJECTIVES: Under the ISBT, the Working Party (WP) for Red Cell Immunogenetics and Blood Group Terminology is charged with ratifying blood group systems, antigens and alleles. This report presents the outcomes from four WP business meetings, one located in Basel in 2019 and three held as virtual meetings during the COVID-19 pandemic in 2020 and 2021. MATERIALS AND METHODS: As in previous meetings, matters pertaining to blood group antigen nomenclature were discussed. New blood group systems and antigens were approved and named according to the serologic, genetic, biochemical and cell biological evidence presented. RESULTS: Seven new blood group systems, KANNO (defined numerically as ISBT 037), SID (038), CTL2 (039), PEL (040), MAM (041), EMM (042) and ABCC1 (043) were ratified. Two (039 and 043) were de novo discoveries, and the remainder comprised reported antigens where the causal genes were previously unknown. A further 15 blood group antigens were added to the existing blood group systems: MNS (002), RH (004), LU (005), DI (010), SC (013), GE (020), KN (022), JMH (026) and RHAG (030). CONCLUSION: The ISBT now recognizes 378 antigens, of which 345 are clustered within 43 blood group systems while 33 still have an unknown genetic basis. The ongoing discovery of new blood group systems and antigens underscores the diverse and complex biology of the red cell membrane. The WP continues to update the blood group antigen tables and the allele nomenclature tables. These can be found on the ISBT website (http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/).


Subject(s)
Blood Group Antigens , COVID-19 , Erythrocytes , Humans , Blood Group Antigens/genetics , Blood Transfusion , Immunogenetics , Pandemics , Erythrocytes/immunology
3.
Acta Haematol ; 144(6): 678-682, 2021.
Article in English | MEDLINE | ID: covidwho-1199822

ABSTRACT

SARS-CoV-2 has been reported as a possible triggering factor for the development of several autoimmune diseases and inflammatory dysregulation. Here, we present a case report of a woman with a history of systemic lupus erythematosus and antiphospholipid syndrome, presenting with concurrent COVID-19 infection and immune thrombotic thrombocytopenic purpura (TTP). The patient was treated with plasma exchange, steroids, and caplacizumab with initial good response to therapy. The course of both TTP and COVID-19 disease was mild. However, after ADAMTS-13 activity was normalized, the patient experienced an early unexpected TTP relapse manifested by intravascular hemolysis with stable platelet counts requiring further treatment. Only 3 cases of COVID-19 associated TTP were reported in the literature thus far. We summarize the literature and suggest that COVID-19 could act as a trigger for TTP, with good outcomes if recognized and treated early.


Subject(s)
COVID-19/complications , Purpura, Thrombotic Thrombocytopenic/diagnosis , ADAMTS13 Protein/metabolism , COVID-19/pathology , COVID-19/virology , Female , Hemoglobins/metabolism , Humans , Middle Aged , Plasma Exchange , Platelet Count , Purpura, Thrombotic Thrombocytopenic/etiology , Purpura, Thrombotic Thrombocytopenic/therapy , Recurrence , SARS-CoV-2/isolation & purification , Single-Domain Antibodies/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL